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Abstract—Infrastructure cloud computing allows its clients
to allocate on-demand resources, typically consisting of a repre-
sentation of a compute node. In general however, there is a need
for allocating resources other than nodes and managing them
in more controlled ways than simply on demand. This paper
generalizes the familiar “compute power on demand” pattern
by introducing the abstraction of an allocatable resource,
describing its properties, and implementation for different
types of resources. We further describe architecture for a
generic allocatable resource management service that can be
extended to manage diverse types of resources as well as the
implementation of this architecture in the OpenStack Blazar
service to manage resources ranging from bare-metal compute
nodes to network segments. Finally, we provide a usage analysis
of this service on the Chameleon testbed and use it to illustrate
the effectiveness of resource management methods as well as
the need for incentives in usage arbitration.
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I. I NTRODUCTION

Over the last decade or so, infrastructure Cloud comput-
ing [1] revolutionized how we think of resource procurement
by making available remote resources via isolated containers
for dynamic exclusive usage. Roughly the same time period
has seen the emergence of scalable (i.e., serving large
user communities) experimental systems like Grid'5000 [2],
GENI [3], Emulab [4], and FutureGrid [5]. These systems
implemented the concept of a scalable production testbed,
i.e., production services that provide and manage many tem-
porary “breakable environments”, composed of distributed
compute nodes, networks, and storage units, used for in-
dividual experimentation. In today's cloud parlance, these
systems developed the concept of a “testbed as a service”:
while individual isolated testbeds are con�gured for experi-
mentation that may get out of hand, the services that yield
them are expected to be production quality. These testbeds
emphasized the need for interactive experimentation, as well
as co-scheduling of multiple resources of different kind, and
thus time controlled access to isolated resources.

The Chameleon testbed [6], [7] provides highly con�g-
urable access to large-scale resources. The hardware consists
of an investment in 15,000+ cores of homogeneous resources
(Intell Haswell nodes) to support large scale experimenta-
tion, along with smaller investment in diversity including
GPUs, FPGAs, storage-rich deployments, as weall as a range
of different architectures. These resources are spread over
two sites, University of Chicago and TACC, connected with
100G network. Users allocate them individually or in large
and complex ensembles and can recon�gure them at bare
metal level, boot from custom kernel if needed, or get access
to serial console. By basing its infrastructure largely on
OpenStack [8], a commodity open source Infrastructure-
as-a-Service implementation, Chameleon demonstrated that
mainstream cloud technology can be used for support-
ing Computer Science systems experimentation. At the
same time, Chameleon extended the concepts underlying
infrastructure clouds by systematizing the concept of an
allocatable resource, extending it beyond handling node
reservations to encompass other resources, and emphasized
generalized time management of cloud resources in support
of interactive and co-scheduled resource use, critical in
experimentation.

In this paper, we introduce the concept of anallocatable
resourceas entity de�ning isolation and thus potential for
exclusive usage on cloud resources; we discuss its properties
and implementation for different types of resources. We then
describe an architecture for a generic allocatable resources
management service, as well as its implementation as the
OpenStack Blazar [9] service (originally called Climate,
since its inception in 2013 until mid-2014) which has
been accepted as a top level OpenStack component since
the fall of 2017. Blazar's implementation is adaptable to
the management of diverse resources so that the service
can be used in con�gurable setting both in conjunction
with other OpenStack components (such as Nova [10] and
Neutron [11]), and on its own by developing independent
plugins for resources managed by services outside of Open-
Stack. Finally, we analyze our experiences with allocatable



resources on Chameleon demonstrating the value of advance
reservations where resources are supply-constrained as well
as the importance of incentives for their management.

This paper is organized as follows. In Section 2 we
introduce the concept of allocatable resource and discuss its
properties. In Section 3 we describe the architecture for a
generic allocatable resources management service followed
by a discussion of implementation of the Blazar OpenStack
service in Section 4. In Section 5 we provide insights gained
from allocatable resource usage on Chameleon. We describe
related work in Section 6 and conclude.

II. A LLOCATABLE RESOURCES

We de�ne anallocatable resourceas a well-de�ned object
within a system that the system's clients can automatically
allocate for exclusive, metered usage, delimited by well-
de�ned time events. We will call the temporary exclusive
ownership of such resources a lease. Leases can be atomic
(associated with one resource only) or complex (associated
with multiple resources).

We discuss below the properties of allocatable resources:
Well-de�ned: It is essential that the description of an

allocatable resource can distinguish between any resources
that can be considered different within the system. For ex-
ample, if a cloud instance maps to multiple architectures, the
instance itself is an allocatable resource but its deployment
on a particular architecture is not. The allocatable resource
description is different than descriptions that a client may
input while interacting with the system which could be
expressed in terms of constraint such as “node with memory
of at least 2GB per core”; in this case, generality simply
facilitates interactions, ultimately resolving the generic de-
scription to a speci�c allocatable resource mapping. This is
particularly important in systems supporting experimentation
where claims are made in the context of a well-de�ned
model.

Exclusive usage:This property implies the ability to
de�ne a unit of isolation between users. Historically, roughly
two de�nitions of this isolation were considered useful:
system isolation, which presents to the user an independent
system, and performance isolation which ensures that the
allocatable resources present consistent performance. One of
the most enabling examples of system isolation are virtual
machines (VMs) [12] which emulate an individual computer
system. Containers [13–15], similarly provide system isola-
tion though of a lesser degree (e.g., unlike VMs containers
may share a kernel). The GENI project de�ned the concept
of a slice [16] which encompasses a set of connected L2
circuits and the compute resources connected to them and
thus de�nes an isolated networking environment. System
isolation does not necessarily provide performance isolation,
i.e. assurance that a system will be associated with a well
de�ned quantum of resource such as guaranteed bandwidth.
This is generally hard to provide in shared environments,

and thus systems that require it (e.g., platforms supporting
Computer Science experimentation) often resort to de�n-
ing allocatable resources at coarse grain to avoid sharing.
For example, to provide performance isolation Chameleon
de�nes compute allocatable resources as physical nodes,
rather than parts of a node (which would provide �ner-grain
sharing but is hard to implement). The implementation of
isolation is typically associated with a certain cost/overhead.
For example, hypervisor hosting VMs will require resources
to implement its function, or bare metal nodes have to be
restored to default state between users which imposes an
overhead on the length of a lease. Allocatable resource is
thus whatever remains after the overhead has been con-
sumed.

Time-bounded, metered, automatic allocation: Re-
sources are allocatable if their availability can be bounded by
well-de�ned time events. The most general implementation
of this functionality allows clients to select speci�c time
events between which their lease will take place; this is
often referred to as advance reservations [17]. We note
that on-demandavailability is a special case of advance
reservations where the start time defaults to the time at which
the request is made. Resources are available only on an on-
availability basis [18], e.g., at a time that cannot be reliably
bounded or constrained by the client, are not allocatable by
a client (though they may be allocatable by the provider
as is the case in e.g., batch systems). The clients should
also be able to change the placement of those events in
time throughout the lifetime of a lease, whether inactive
or active (i.e., without or with allocated resources). The
usage thus described should be monitored, metered, and
potentially limited according to those measures; the most
common example of this is the speci�c dollar amounts that
users pay under different cost models in commercial clouds,
but also applies to allocations and policy constraints on
usage in clouds operated within non-monetary economies
such as academic clouds. Allocations that do not conform to
policy/metering requirements (such as a credit or allocation
limit) should not be admitted into the system. Finally, the
requirement for automatic allocation is essential to ensure
that a system managing allocatable resources will scale.

A desirable characteristic of a system managing allocat-
able resources is to provide an availability calendar: it allows
users to assess the availability of a resource at any given
time, though only an actual lease request can provide the
transactional guarantee of a resource availability. Still, unless
the transactional volume in a system is very high for a
speci�c type of resource, the availability calendar can be
an effective additional tool in resource management.

Of the properties described above, the isolation units are
typically set by a system designer who selects implemen-
tation suitable to the system's objectives. Providing well-
de�ned descriptions of those isolation units and managing
them in a way that satis�es the remaining conditions is the





Resources in the inventory are stored in the resource
database as individual records. A resource record consists of
its unique ID, its type, and then a set of key/value metadata
pairs that describe the resource in more detail, e.g. a node
might store its rack position and CPU architecture, while a
VLAN might store its 802.1Q tag. Leases are stored in the
lease database as a lease record, with a unique ID, start time
and end time, and one or more reservation records consisting
of a resource type and the set of constraints speci�ed by the
user for that resource type. It is important to persist the
original constraints so that additional resources satisfying
them may be substituted later, or so that the user may adjust
the constraints later. Separating the concept of a lease and
a resource reservation provides the �exibility for one lease
to cover multiple types of resources at the same time, e.g. a
user can reserve both a set of nodes and a public IP address
by simply associating resource records with a given lease's
reservation record. In addition to the lease and reservation
records, a set of lease lifecycle event records representing
each phase of enactment (lease start, before lease end, lease
end) are stored for each lease.

The resource assignment on lease creation may be early
(�nal mapping to speci�c resources created at the time
of reservation) or late (�nal mapping to speci�c resources
created by the time the lease becomes active); the former
leads to a simpler implementation, the latter provides more
�exibility and dynamicity in optimizing assignments for
various queries and adapting to resource changes. In either
case at creation time the database query should return a
non-empty list of possible options satisfying the constraints
or the lease will not be accepted; it is thus important that
the resource database supports ef�cient querying over an
arbitrary set of key/value pairs (resource metadata).

Unless an iterative negotiation style interaction with the
client [17] is desired and supported, a selection function is
then applied to pick a speci�c option. Depending on the
timing of resource assignment this function may optimize
constraint management across leases or optimize administra-
tive processes. For example, in our original implementation
the selection function would pick the �rst item off the list;
this led to signi�cant churn on nodes that the resource query
returned �rst and thus uneven hardware wear; we subse-
quently modi�ed the selection function to pick a random
resource which resulted in more uniform assignments across
resources. In general, the selection function can be used to
optimize other qualities like power usage. Once a unique
resource is identi�ed, records are persisted in the database
and a resource reservation ID is returned.

Lease management may involve management for either
adaptation or optimization. For example, the system may
dynamically monitor resource inventory for its health status.
Unhealthy resources are marked as such, and any leases that
contain that resource (active or pending) enter a special “de-
graded” state. Based on policies and con�guration, the lease

manager may automatically try to �x the lease (both active
and pending) by �nding another resource that matches the
original constraint stored in the database, by disassociating
the resource from the lease. If no replacement resources are
found, the lease remains in the degraded state.

The lifecycle events associated with a lease set up during
lease creation are periodically checked and triggered at
appropriate times. Most of the events delegate to resource
plugins described in the next section to implement resource-
speci�c functions. For example, once the reservation is ready
to start, an event is triggered that causes the manager to
call the internalon_start operation implemented by the
enactment plug-in; as a result of this action the reservation
status changes from pending to active.

C. Resource plugins

The Lease Manager handles only functionality related to
managing resource reservations and assumes that enactment,
i.e., a method for allowing reservation owners to access their
reserved resources while their reservation is active, is imple-
mented by resource-speci�c enactment services. The main
assumption we make about those services is that they can
separate reservable resources from a pool of (potentially) on-
demand resources, making them usable only when obtained
through the Lease Manager. For example, when including
�oating IPs as an allocatable resource via our system, the
operators must ensure that reservable �oating IPs are not
included in their subnet's allocation pools, which prevents
them from being allocated to users directly via Neutron – but
then the Lease Manager, using privileged service credentials,
can call out to Neutron to allocate �oating IPs into a speci�c
project (in this case the project owning the reservation) and
remove them from the project when requested (i.e. when the
reservation ends).

Enactment plugins allow the resource manager to support
leases for different types of cloud resources, managed by dif-
ferent services (e.g., compute resources managed by Open-
Stack Nova [10] and network resources by Neutron [11]).
To interface with these services, each resource type requires
resource-speci�c enactment plugins, ensuring separation of
concerns.

The create, update, and delete inventory management
operations as shown in Figure 1 contain an almost direct
pass through to their plugin implementation. They contain
either custom-made tools for generating resource meta-data
or interface with a service that holds that information (e.g.,
it might fetch compute host information from OpenStack
Nova or services con�guring it for Nova). Especially when
adapting resource management services that were not orig-
inally implemented to work with reservation systems, this
part of the plugin may also implement a method separating
reservable resources from the main pool of on-demand
resources (managed by a service like Nova), making them
usable only when reserved. In an OpenStack installation this



would result in dividing the pool of nodes into reservable
nodes and nodes available via on-demand only as before.

While creating and updating leases is handled entirely as a
generic reservation, the allocatable resource manager plugins
implement functions dealing with allocating and deallocating
actual resources to a lease. Those operations are as follows:

on start(resource reservation id)
before end(resourcereservation id)
on end(resourcereservation id)
update reservation(resourcereservation id; values)

Theon_start andon_end functions are called respec-
tively when a reservation (lease of a speci�c resource) starts
and ends and handle resource allocation and deallocation.
In addition,on_end is also called when a lease is deleted,
to trigger the end of an active reservation or perform re-
quired cleanup for pending reservations. Thebefore_end
function can trigger an action at a con�gurable time before
the end of a reservation. For example, it can be used to
snapshot instances running on compute hosts before they
are terminated at the end of their reservations.

While updating a pending reservation can be handled
entirely via generic service logistics implementation, once a
reservation becomes active (i.e., is associated with allocated
resources) updating a reservation may trigger a call to
a plugin update_reservation function (e.g. adding
more compute nodes to an existing reservation).

IV. I MPLEMENTATION

In the context of the Chameleon project we de�ned three
types of allocatable resources: heterogeneous bare metal
machines, isolated network segments (VLANs) and public
IP addresses on the Chameleon testbed [6]. The compute
nodes are well-described by the Chameleon Resource Dis-
covery [19], down to serial numbers of individual compo-
nents. We chose to provide bare metal nodes as allocatable
resources in order to provide both system and performance
isolation; the sole ownership of the node ensures that users
can run performance tests without interference by others.
In contrast, the isolation property for network allocatable
resources (VLANs) provides only system isolation; this is
because we do not currently have a reliable implemen-
tation ensuring performance isolation for networks. The
IP addresses are allocated from a pre-assigned pool. For
all allocatable resources, Chameleon provides a resource
calendar that facilitates planning.

While the implementation of individual allocatable re-
sources varies, the ability to allocate, meter, and enforce
usage is implemented via the same service. The Lease
Manager is based on a separate OpenStack service called
Blazar [9], to which we are actively contributing. We addi-
tionally integrated or implemented separate resource plugins
for each use-case we required: bare metal node reservation

(via OpenStack Nova, the compute instance provisioning
service), VLAN 802.1Q tag reservation, and public IP reser-
vation (via OpenStack Neutron, the network provisioning
service).

A. Blazar: Allocatable Resource Manager

The Blazar system consists of two components: an API
component, which provides the lease interfaces over an
authenticated HTTP/JSON interface, and a manager com-
ponent, which provides lease, reservation, and resource
lifecycle management, as well as the delegation to various
resource plugins for enactment. The API and manager
components communicate over an RPC interface, where an
AMQP bus serves as the transport layer. Authentication to
the HTTP/JSON interfaces is performed via OpenStack's
Keystone [20] authentication service. The interfaces are ex-
posed to end-users over the Internet on a TLS-encrypted con-
nection, which is terminated by a proxy running HAProxy.

The manager component handles user requests and trans-
lates them into actions against the backing resource and
reservation databases. Blazar does not lazy-assign resources;
when a user creates a lease, speci�c resources are selected
and assigned to the lease, making them unreservable by other
users for that time period.

We use the SQLAlchemy library [21] to create a thin
object-relational mapping (ORM) layer that the manager
uses to interact with database entities. Each resource type
has three database tables associated with it: aresources
table, which stores the resource records, areservationstable,
which stores a set of constraints speci�c to a reservation
for the resource and any parameters needed for enactment
of the reservation, and anallocations table, which stores
associations between the �rst two tables once resources are
allocated to a reservation. An optional fourth table called
extra capabilitiescan be used to store arbitrary key/value
pairs that further describe a resource. Users can leverage
theseextra capabilities, combined with some attributes stan-
dard to the resource (and stored in the resources table), to
�lter the resource inventory via their reservation constraints.
For the lease management, we have three tables:leases,
which stores the lease records,events, which stores the lease
lifecycle event records, andreservations, which serves as a
general table for all reservations across all resource types. A
record in a resource's reservations table is associated with
a record in the general reservations table. This separation
is necessary due to a speci�c enactment plugin sometimes
needing additional parameters stored at lease creation time,
e.g. which network to assign a public IP from.

The manager queries the events table every few seconds
and triggers any unexecuted events whose time has come
via plugins described below.



B. Nova/Ironic Plugin: Nodes as Resources

The Nova plugin implements reservation of bare metal
nodes. In OpenStack, bare metal provisioning is a combined
effort between the Nova and Ironic [22] systems. When an
operator adds a bare metal node to the inventory, the operator
does so by specifying an Ironic node UUID. The plugin
retrieves specs such as how many CPUs are on the node
from Nova. These attributes are then mirrored in the resource
database. Operators can add additional metadata to the node,
e.g. rack placement or CPU vendor information, which is
stored in theextra capabilitiestable for this resource type.

At lease start, the plugin moves the reserved nodes to
a special Nova host group. Users must present a valid
reservation ID to Nova when launching an instance, and
Nova schedules their instance on one of the nodes in this
host group. Before the lease ends, the plugin will send a
noti�cation email to the email address tied to the user's
OpenStack account. This is important because when a lease
ends, the plugin will instruct Nova to terminate all running
instances on the bare metal nodes, and users may want to
ensure their data is moved off the node beforehand. The
plugin cleans up the host group after instance termination.
Any BIOS or �rmware settings are reset as part of instance
termination; this is performed by Ironic.

C. Neutron Plugin: VLANs as Resources

One of the networking enactment plugins Chameleon uses
is the network segment plugin, which allows users to reserve
a VLAN 801.2Q tag. The Chameleon testbed infrastructure
resides on host institution networks both at TACC and at
the University of Chicago, and initially relied upon switches
provided by the host institution. For this reason, only a
limited number of 801.2Q tags were provided to Chameleon,
and demand for isolated networks could exceed capacity.
Additionally, network slices are built by Chameleon users
using specialstitchable VLANsextending to the nearest
stitchport [23], and they are few in number (e.g., only 10 are
available at the University of Chicago site). To utilize the
plugin, an operator adds networks to the resource inventory
by specifying their 801.2Q tag. Additionally, operators con-
�gure Neutron to no longer allow users to create networks
with a speci�c 801.2Q tag, as only the resource plugin
should be allowed to perform this action.

During lease creation, the VLAN resource plugin will
instruct Neutron to create a new OpenStack network with a
given 801.2Q tag. The network is associated with the users
account, and will appear in their dashboard for use, though
they wont be able to modify it. When the lease ends, the
network is simply deleted, making sure to �rst unhook the
network from any running instances.

D. Neutron Plugin: IPs as Resources

The second networking enactment plugins is responsible
for managing the IPv4 addresses allocated to Chameleon on

the public Internet. Metering public IPs is important as, in
our experience, users would often allocate more public IPs
to their account than needed, or likewise forget to release
them when �nished. Over time, this can deplete the pool
of available IP addresses. To utilize this plugin, an operator
adds IP addresses to the resource inventory by specifying
their IPv4 address and Neutron network UUID. Normally,
Neutron provides an interface that allows users to request
an IP on a given network out of an allocation pool in an
on-demand fashion. To properly implement IPv4 addresses
as an allocatable resource, this interface must be disabled,
which can effectively be accomplished by con�guring the
Neutron network to have an empty on-demand IP allocation
pool.

During lease creation, the IP resource plugin will instruct
Neutron to allocate a new Floating IP on the network. The
Floating IP is then associated with the user's account, and
will appear in their dashboard for use. When the lease ends,
the Floating IP is deleted after ensuring it is no longer
assigned to any running instance. It is not currently possible
to prevent a user from deleting this Floating IP, but in
this event, the resource plugin simply does not attempt to
delete the IP at lease termination. This enactment plugin was
contributed by NTT.

V. A NALYSIS OF LEASE USAGE ONCHAMELEON

To understand how users were using leases we analyzed
the usage data from the Chameleon testbed between 2015-
07-17 and 2019-04-11. The usage is broken down over all
types of node resources on the Chameleon testbed described
in detail at [24]. We gradually added resources to the
Chameleon testbed (e.g., the Skylake nodes were added
slightly more than a year ago) so for each resource the
relevant usage is shown from the time it was added. We
also removed all maintenance leases as well as all operations
leases from the pool to focus exclusively on user behav-
ior. The usage data was collected from OpenStack Blazar
(reservation service) and Nova (compute service) databases,
and all the DevOps data (data belongs to the internal
development and maintenance projects) was excluded.

We �rst asked to what extent Chameleon users took
advantage of the fact that testbed resources are allocatable
rather than merely using resources that happened to be
available when the user started the experiment. To assess
that we counted the number of advance reservations used
for each type of allocatable node resources on Chameleon
(reservations for �oating IP addresses and VLANs were
introduced very recently and have not yet generated reliable
usage information). We considered the lead time with which
each reservation was made and mapped them into four
categories: (1) on-demand, (2) up to a day in advance
(reservations with short lead time), (3) up to a week in
advance, and (4) more than a week in advance (reservations
with long lead time). The results are shown in Figure 2
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